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SUMMARY

Computer programs written in GAUSSTM  for IBM compatible
personal computers are described that perform dynamic tree ring
modeling with climate data; the underlying theory is also de-
scribed. The programs and a separate users manual are available
from the authors, although users must have the GAUSS software
package on their personal computer. An example application of the
programs is given, and a number of relevant references should
provide enough information for users to decide if they are inter-
ested in this system. The purpose of these programs is to make
these techniques easily available to the community of tree ring
analysts for application and further development.
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Theory and Programs for Dynamic Modeling of
Tree Rings from Climate

Paul C. Van Deusen and Jennifer Koretz

INTRODUCTION

The field of dendrochronology is currently in a period
of rapid development. This is due in part to emerging
concern about air pollution effects on forests and the
reality that tree rings represent a long-term record
that may yield information on these effects. Linked
with this is the fact that much of the research on air
pollution effects on forests is being conducted in closed
canopy forests. Traditionally, tree ring research was
done in arid forests of the Southwestern United States
where trees are less affected by stand dynamics.

One ofthe  mainstays of dendrochronology that states
that current conditions are analogues for past condi-
tions, the uniformitarian assumption, may not be
applicable_ in closed forest conditions. Trees being
heavily affected by stand dynamics are likely to exhibit
changing relationships with the environment over
time, even though the environment itselfhas remained
stable. The purpose of this report is to describe a pro-
cedure and computer programs for modeling climate
relationships with tree ring data without making the
uniformitarian assumption.

A simple method for dynamically modeling the rela-
tionship of climate and ring width was presented by
Van Deusen (1987a) and expanded to include more tree
level information such as diameter and age in Van
Deusen (1988). The simpler method will form the basis
of this paper, although some minor extensions are
made to improve the model fit and to increase the level
of statistical rigor. However, the prevailing purpose
here is to make these procedures available to inter-
ested tree ring analysts for testing and evaluation
without each having to write their own software.

THE PROPOSED MODEL

The procedure presented herein has a number of
distinct features:

(1) The uniformitarian assumption is not required.
Climate models with dynamic parameters are em-
ployed, so changing climatic relationships can be

modeled. The Kalman filter (Kalman 1960) becomes
important in the estimation process, but it should be
noted that any linear model could be formulated (as a
state space model) in a manner suitable for estimation
using the Kalman filter. Other applications of the
Kalman filter have been made to tree ring analysis that
are quite different from the one to be discussed below,
e.g.VisserandMolenaar(1987)andVanDeusen(1987b).
The estimation method is recursive and past data are
given less weight than current data in determining the
current parameter estimates. This seems biologically
reasonable, because when the tree was growing a
particular ring of wood it presumably was influenced
more by recent circumstances than by the distant past.

(2) All tree ring series are maintained as individuals
throughout the analysis and data reduction is achieved
by estimating parameters. This is different from the
traditional method of modeling climate with a single
average ring width or index series, although the results
could be quite similar in some cases.

(3) The method simultaneously estimates the mean
value function and the climate model. The standardi-
zation procedure is also incorporated into the method
proposed in Van Deusen (1988).

The State Space Formulation

The formulation of the suggested model is simple
when written in state space form as we demonstrate
below. The first equation, known as the measurement
or observation equation, is

Y, = F,ol,  + vt, (la>
whereY, is an n,xl vector of standardized ring widths,
nt is the number of observations for year t, F, is an ntxp
matrix that for our formulation has l’s in the first
column and zeroes in the rest, a, is a pxl parameter
vector, and v, is an n,xl error vector with variance
matrix V,. The second equation in the formulation is
known as the transition equation and is written gener-
ally as

dt = G,o,, + wt, (lb>
where G, is a pxp transition matrix, and w, is a pxl error
vector with variance matrix W,. Equations (la> and
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(lb) shed little light on our specific formulation, but
the general notation is useful in describing the algo-
rithms later.

More specifically, the parameter vector in our sug-
gested formulation is r q

mt
bll
b1t

at= . ,

b’p&t
L II

where m, is roughly equivalent to the average chronol-
ogy in classical dendrochronolgy, b, is a fixed intercept
in the climate model, and the other b-parameters are
multiplied by p-2 climate variables in the transition
equation to partially explain the m, parameter move-
ments. Notice that only the m-parameter appears in
the observation equation, since the F-matrix consists
of O’s except for the first column of l’s, which zeros out
the b-parameters.

The transition equations for each parameter are
mt = b, + b, ,,c, t +...+ bpz,t_lcpz,t  + wmt 7 (2)> 1

b, = b, + 0,

b1.t  =  bl,t-l +  W1t  ’

Kalman filter equations can be solved. We specify V, to
be u :It, where I, is an identity matrix of order n, and

nt
C (Yit - Ptj2

“ 2“t = i=l
nt - 1

Thus, the error terms in the observation equation for
year t are assumed to be independent, with variance
estimated from the standardized ring widths for year t.
However, the fact that m, is random and shared by all
observations means that contemporaneous correlation
is accounted for in this formulation.

The transition variance matrix, W,,  is assumed to be

W, = 2 DIAG[  q,, 0, ql, . . . ‘qp_J’
t

where DIAGl.1  means to form a diagonal matrix from
the arguments. Therefore, the parameters in the model
are assumed a-priori to be independent, and the inter-
cept term in equation (2) is fixed. The reason for
multiplying the transition variance matrix by a@, is
that the m, parameter should be roughly equal to the
mean value in the vector Y,,  and the proper choice for
q, allows this to happen even when the climate model
is poor. In fact, it can be shown that when all of the b-
parameters equal zero the mean value parameters are
estimated as follows:

b2,t  =  b,,t-1  Wzt ’

bp2,t = bp2,tA  +  wp2,t ’

where the ci,t  , i=l,..., p-2 represent p-2 climate vari-
ables. Thus, equation (2) is analogous to the transfer
function from classical methods, with the important
difference being that the parameters are time varying.
The following G-matrix will result in the above transi-
tion equations when substituted into equation (lb):

Basically, the G-matrix is created by altering the first
row of an identity matrix of order p.

Variance Specification

The observation variance matrix, V,, and the transi-
tion variance matrix, W,, must be specified before the

with variance

qm a:
V(m,) = - -

9, + I I-4 .

Thus, the parameter q, allows the system to produce
reasonable estimates of the mean value function even
when the climate relationships are poor. When the
climate model predicts well, less weight is given to the
data and more to the climate model. The parameters
qm,...,qp2can  be estimated via the method ofmaximum
likelihood, which is discussed below. The qm-parameter
was assumed equal to 1 in Van Deusen (1987a),  but
allowing more flexibility can considerably improve the
model performance as was shown above.

KALMAN FILTER THEORY

To fully understand what the computer programs are
doing, it is necessary to understand the basics of
Kalman filter theory. The Kalman filter is a set of
equations that provide estimates of the parameters in
equations (la) and (lb) that have the general property
of being best linear unbiased estimates (BLUE) when
the following assumptions hold:
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i.e., the transition and observation error terms are
distributed with mean zero and are not contemporane-
ously correlated. Furthermore, there should be no
serial correlation either within or between the se-
quences vt and wt. Estimation procedures have been
developed when some of these conditions were violated
(Jazwinski 19701,  but these will not be required here.
Also, the starting values used should be independent of
all error terms. If the starting values and the transition
and observation errors are normally distributed, the
Kalman filter estimates become the best minimum
variance estimators among all estimators.

The state parameters are estimated with equations
that can be considered in three parts: prediction equa-
tions, updating equations, and smoothing equations.
Let a, denote the optimal estimator of oLt as based on all
information up to and including Y,,  and let the covari-
ante matrix of a,-ol,  be P,. The prediction equations for
CY, and the associated covariance matrix conditional on

I

at-l and P,_l are
a,, = Gtael  p and

Pt/t-l = G,P,_,G,’  + W,.

When Y, becomes available, the updating equations
for the estimate of (Y~ and the associated covariance
matrix are-

a, = a,, + Ptik,F,‘H;‘E,  , and

p, = q/-l - P&‘,‘H;lF,P,l  , where (5b)

E, = Y, - F,atit_l  , and

H, = F,Ptit_,F,’  + V, .

The estimate of a,in (5a) is the sum of its estimate at
time t-l and a weighted average of the prediction
errors, E,. The covariance matrix of the prediction
errors is H,. A numerically superior equation for P, is
used in our program:

P, = (Ip - KF,)P,&,  - KtF,)’  + K,v,q’ ,

where Kt = Ptit_,F,‘H,-’  is the Kalman gain.

This form of the equation tends to produce a positive
definite symmetric covariance matrix for less well
conditioned problems than equation (5b).

At any time, a, is the optimal linear estimate given
all previous information, but only the estimate at time
T contains all available information. The optimal solu-
tion for any time t, given all available information, is
referred to as smoothing or signal extraction. The state
space solution to this problem (Harvey 1981) uses
solutions at time T and recursively goes backward to
time 1. This yields the optimal smoothed estimates of
the state parameters with associated covariance ma-
trices as follows:

a , = a, + PT (a,+,, - G,+,a,)  , and
(6a)

P, = P, + P: (P,+,- P,+vt)P,*  ’ , where

P*, = PtGt+l’Pt+l/t-l  , and

a,r,r=a.r  and P,=P,  for the starting values.

Equations (4b),  (5a),  and (5b) require knowledge of
variance matrices W, and V, that is not often available
in statistical applications. There are a number of sug-
gested methods for estimating the unknown parame-
ters in these matrices, including a maximum likelihood
approach. Schweppe (1965) has shown that the log-
likelihood of a sample from a population described by
equations (la) and (lb) is

I., = -$ log 1 H,I + E, ‘H,-%, .
t

The likelihood function is specified completely in terms
of the prediction errors and their covariance matrices,
which are natural outputs of the Kalman filter solution
equations. The only assumptions required for this
approach are that w, and vt be normally and independ-
ently distributed. Harvey (1981) and Engle and Wat-
son (1981) give good developments of this method. The
likelihood function (7) is evaluated iteratively by solv-
ing for the state parameters with equations (5a) and
(5b) conditional on the most recent values for the
unknown parameters in the model. The log-likelihood
is maximized by using a grid search for the variance
parameters or the method of scoring (Engle and Wat-
son 1981).

If the model is correct, the prediction errors form an
innovations sequence (Anderson and Moore 1979) in
that E, represents the new information in Y, in the
sense that E, is orthogonal to all previous E,‘s. This is
true with or without the normality assumption. A
diagnostic check for a correctly specified model in-
volves checking to see if the prediction errors form a
white noise sequence with no lagged cross-correla-
tions. Thus, the Kalman filter in combination with the
method of maximum likelihood provides a feasible
algorithm for fitting and testing the validity of equa-
tions (la) and (lb) with tree ring data.

COMPUTER PROGRAMS

Data and Software Requirements
The authors offer a number of programs that will

enable users to take their data through the entire
analysis with a minimum of effort. The programs are
written in the GAUSSTM programming language, which
will run on IBM-compatible personal computers and
requires 512K memory, the DOS 2.10+ operating sys-
tem, and a math coprocessor. This software was chosen
because it is inexpensive and efficient, but the pro-
grams could be rewritten in some other software lan-
guage.
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Two types of data are required: standardized tree
ring data and climate data. Standardization in dendro-
chronology involves removing uninteresting long-term
trends from each tree ring series so that most of the
remaining variance is due to signals that all ofthe trees
share in common. A portion of this common signal
should be due to climatic factors. The data in the
example to be presented here have been standardized
by taking first differences of the natural logarithm of
ring width. The rationale for this is discussed in Van
Deusen (1987a,b). Users may want to standardize their
data in other ways. The climate data used in the
following example came from National Weather Serv-
ice climatic division averages for total monthly rainfall
and average temperature.

The main program requires the standardized tree
ring data to be input as a matrix where each row
corresponds to a tree and each column corresponds to
a year, with the first column being the first year to be
analyzed. The climate data are input in a matrix with
each row corresponding to a year and each column
corresponding to a climate variable. Thus, the number
of rows in the climate matrix should equal the number
of columns in the tree ring matrix. The users manual
describes programs for preparing these matrices. The
program is not currently designed to predict past val-
ues of climate, although this is certainly possible (see
Van Deusen 1987a).

Searching for Climate Variables
A program, called dynatry, is provided that searches

for climatic variables by a brute force technique. The
program asks the user to list the climate variables to
try and then fits the model to each climate variable and
outputs summary statistics before proceeding to the
next variable. The program operates by allowing the
user to force any number of variables into the model,
then one variable from the ‘try list’is added to the basic
model, summary statistics are produced, the previous
‘try list’ variable is dropped, and the next ‘try list’
variable is added. When the ‘try list’ is exhausted, the
program stops and the user can print out the results.
The single most important summary statistic provided
is the maximum likelihood value, and usually the
variables with the largest likelihood values would be
judged most important. The users manual contains
more information on program dynatry.

Main Program
The main program, called dynaclim, implements the

Kalman Filter equations (4aH5b) and estimates the
unknown variance parameters discussed above in the
section on variance specification. This is done by maxi-
mizing the log-likelihood function (7) using the method
of scoring described in Engle and Watson (1981). The
method of scoring requires only first derivatives and
provides asymptotically valid estimates of the vari-

4

antes of the estimated variance parameters as a by-
product. The program computes exact derivatives re-
cursively (see Ljung 1981) and exploits the special
structure of this particular problem for increased effi-
ciency. This results from the fact that the F-matrix in
equation (1) is of a very simple form that leads to
elementary equations for H-l and the determinant of H
in equation (7) among other things.

The program begins by asking the user how many
years are involved in the analysis. It is possible that the
tree ring data go beyond the end of the climate data,
and the user could analyze fewer years than there are
columns in the tree ring matrix. Normally, years and
columns would be equal. The program then requests
the number of climate variables to be included, which
effectively tells the program how many parameters to
prepare to estimate. Finally, the program asks for the
column number and lag to associate with each climate
variable. Remember that the columns of the climate
data matrix correspond to climate variables and the
rows correspond to years. If lag 0 is entered, the
program uses the climate variable from row t when
analyzing year t. If lag 1 is entered the program uses
the climate variable from row t-l when analyzing year
t, and lag 2 means use row t-2. etc.

The program then uses a grid sear&/bisection method
to find starting values and begins the scoring algo-
rithm with the best starting values it finds. After
converging on a solution the user is asked if smoothing
should be performed. If the answer is yes, the smoothed
state variables and the prediction errors are saved to
files for later analysis and plotting using other pro-
grams that are described below. In either case, the user
can return to the point where the program asks for new
climate variables and lag values or stop the program
execution.

Example Application of Main Program.-Appendix
A contains the output from our example application.
The program output in Appendix A begins by asking
the number of years, which is 82 (1902-1983) for this
analysis. The data set being used here contains 28
cores from eastern hemlock trees Ukuga canadensis)
from the upper peninsula of Michigan and was pro-
vided by Dr. Edward R. Cook of the Lamont-Doherty
Tree Ring Laboratory of Columbia University. The
main program uses a data reading module, called
dynadata, that was set up to read the hemlock data and
climate data from the appropriate climatic division of
Michigan. To read other data sets the user must edit
this module as described in the users manual.

The program then asks for the number of climate
variables, which was 1 for this example but could be
any number in general. The 12 columns in the climate
matrix correspond to the first difference of January
through December temperature. Therefore, climate
variable 7 is the first difference of July temperature.
Lag 1 is chosen, which means that previous year’s
climate is used to predict current year standardized



ring width. First difference of July temperature was
chosen after trying a number of variables with program
dynatry.

After inputting the climate variables, the program
beings outputting information on its initial grid search
to find starting values for the unknown variance para-
meters. The grid search finds that q,=31 and q,=.O125
are the best starting values tried and begins actually
using the scoring algorithm (Engle and Watson 1981)
to produce the output after the message “Finished with
Bisection” is printed (see Appendix A). The fact that
the iteration number gets out of sequence is unimpor-
tant and results from the way the program uses the it-
eration number to control the grid search.

The program converges and produces the final re-
sults and prints the variance parameter estimates
associated with the best likelihood value it could find,
i.e. 2297.80. The variance parameter estimates are
listed with q,,, first and q1 second. The covariance
matrix is the inverse of the information matrix, which
had to be computed anyway as part of the scoring
algorithmcsee  Theill971,  p. 395). In this example, only
q, appears to be significantly different from zero as
judged by the following approximate g&percent  confi-
dence interval: 29.29 f 2464.82.

The program then asks ifthe  smoothed estimates are
desired, which they are for this example. After smooth-
ing is completed, the user has the option of either
entering different climate variables for another run or
stopping. In this case, we stop to look at the smoothed
output.

Plotting Program
A program called dynaplot is provided that enables

the user to plot certain results from the main program
output. The smoothed parameter estimates have been
stored in a file called “ans,”  and the prediction errors
are stored in “preder.” Dynaplot will automatically
access these files when executed by the user. Hardcopy
from this program can be generated by GAUSS; see
GAUSS enhanced graphics on pages 32 and 33 of the
main manual. Module GRAPH2d  of GAUSS must be
installed before this program will run.

Plot Program Output.-Appendix B contains a series
of plots produced by dynaplot. Plot B 1 gives the average
one step ahead prediction error defined for equation
(5b) with approximate 95-percent  confidence interval
as dashed lines. If the climate model were able to
predict well, these should not be significantly different
from zero. The model, unfortunately, was not predict-
ing well enough for that ideal situation to occur in this
example. Plot B2 is the m-parameter, which is roughly
equivalent to the average chronology from classical
procedures. Plot B3 is the constant intercept from the
climate model with 95-percent  confidence intervals.
Plot B4 is the time varying parameter that multiplies
past July temperature differences. This shows a ten-
dency to become less significant following about 1970.

Plot B5 comes from another general purpose program
called “overlay” for producing overlaid plots of climate
and tree ring data. Plot B5 is previous July tempera-
ture differences overlaid on the average chronology for
the standardized Michigan hemlock data. This shows
the strong negative relationship before 1970 that was
evident on plot B4. However, it indicates that the
relationship did not disappear after 1970; it was in the
process of becoming a positive rather than a negative
relationship.
Correlation Matrices Program

Program dynacorr generates lagged cross-correla-
tion matrices from the prediction errors stored in file
preder. This program computes the cross-correlations
defined below:

P7(ij)  =
E[e,We,_,Cj)l

aiuj 3

where e,(i) is the vector of prediction errors for tree i,
ui is the standard error of a prediction error for tree i,
and 7 is the lag value applied to tree j’s prediction
errors. These quantities are estimated from the data.
Under the null hypothesis that the prediction errors
are not causally related, the sample cross-correlations
are independently and normally distributed with mean
zero and variance l/T (T is the number of years where
the particular prediction errors exist) when the sample
size is large. The program computes matrices of these
cross-correlations and prints them out in schematic
form. A “+” means the sample cross-correlation was
greater than 2 standard errors (i.e., 2/dT),  a ((-” means
less than 2 standard errors, and a “0” means in be-
tween.

Correlation Program Output.-Appendix C contains
the output from dynacorr for this example using the
Michigan hemlock data with one climate variable.
Figure Cl is the lag 0 matrix, which is necessarily
symmetric so only the upper diagonal is printed. This
shows that 83 percent of the values are significant and
positive, which verities what the average prediction
error plot showed. The climate model is not performing
well in that much of the variance remains unexplained.
However, the fact that all significant correlations are
positive suggests that the crossdating and standardi-
zation were effective in making all of the series quite
similar. This matrix is interpreted by noting that the
ith row and jth column are the cross correlation of tree
i with tree j prediction errors. Therefore, the diagonals
will always be significant at lag 0, because this is tree
i’s correlation with its own current prediction errors. If
one core were completely uncorrelated with any other
cores, it would suggest a crossdating error. Therefore,
the lag 0 plot is a valuable check on crossdating.

The remaining schematics in Appendix C give cross-
correlation matrices for lags 1, 2, and 3. There is no
reason why these should be symmetric, so the propor-
tion of significant values is based on all elements being
independent and free to take on any value. There are a
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large number of significant lag 1 negative correlations,
which suggests that either the trees are competing or
the climate model needs improvement. Frankly, the
interpretation of the lagged values is difficult, and
without knowing the physical location of these trees it
is hard to make any biologically meaningful state-
ments.
Miscellaneous Programs

We have provided some other programs that are
useful for manipulating and plotting either the tree
ring or climate data associated with the analysis.
These are described briefly below and more thoroughly
in a users manual (available from the authors).
GAUSSTM provides enough programming and plotting
capability to allow users to develop other programs as
needed within that system.

Data Input Programs.-A program called “make-
data” has been provided to prepare an ascii tree ring
data set in the standard “Tucson format.” SeeAppendix
D for examples of data in formats easily read by
program makedata. This program requires padding
missing values with dots in the raw tree ring data set,
because GAUSS has problems with missing values on
data input. The program outputs raw data or first
differences of the natural log into a file suitable for
dynaclim or dynatry.

Users can, ofcourse, use any method to create GAUSS
data sets suitable for input to dynaclim. The important
thing is that the standardized tree ring data are organ-
ized so that rows represent trees and columns repre-
sent years. Furthermore, each year or column must
have at least two non-missing values or dynaclim will
abort. The climate data should be organized so that
each row represents a year and each column a variable.
Naturally, the order of the data sets is important, that
is, column 1 of the tree ring data is the first year to be
analyzed and corresponds to row 1 of the climate data.
The ascii to GAUSS conversion section in the Gauss
manual should be consulted on this.

Plotting Program.-A program called “plotraw” is
provided for plotting tree ring or climate data. This
program is easy to use and begins by requesting the
name ofthe  file where the data reside. The y-axis scales
are chosen automatically, and the x-axis is assumed to
take sequential integer values. Thus, you are asked for
the first value of the x-axis that will correspond to the
first column in the data set. The other columns will be
numbered sequentially. This results in an x-axis that
could go from 1 to 12, say, if you were plotting a climate
data set with 12 columns, one for each month of the
year. The program then asks for a row number, which
with climate data corresponds to a year. A row number
with tree ring data would correspond to a tree. This
program is useful for visually inspecting the data. An
enhanced version of plotraw, called overlay, was used
to produce plot B5, which is discussed under “Plot
Program Output.”

Data Editing.-A program called dynaedit allows
the user to do some basic editing of their GAUSS data
sets. This asks for an input file and then allows you to
delete whole rows or columns, or to change individual
elements of the matrix. The results can be saved to the
original or to a new file or you can abort at any time.
This program is self explanatory after being executed.

CONCLUSIONS

Theory and computer programs have been presented
for predicting standardized ring widths dynamically
from climate data. The method propounded is similar
to the traditional approach used by dendrochronolo-
gists, in that a climate model is developed to predict a
parameter that is analogous to the average chronology.
Major differences between this system and the usual
approach are that individual cores maintain their iden-
tity, and climate parameters are allowed to vary over
time. Thus, the uniformitarian assumption of time
invariant climate relationships is not required.

These programs are easy to use and will help dendro-
chronologists to familiarize themselves with the con-
cept of dynamic tree ring modeling from climate. These
procedures will no doubt be improved and enhanced
over time, but it is unlikely that they will disappear.
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APPENDIX A - OUTPUT FROM EXAMPLE APPLICATION

DYNACLIM VERSION 1 .l - BY PAUL VAN DEUSEN & JENNIFER KORETZ
USDA FOREST SERVICE, SOUTHERN FOREST EXPERIMENT STATION
****************************************************************

ENTER NUMBER OF YEARS
< 82 >

You have 12.00000000 columns in climate matrix CLIM

82.00000000 rows in climate data, 82.00000000 columns in treering  data

ENTER NUMBER OF CLIMATE VARIABLES
<l>

ENTER COLUMN AND LAG OF CLIMATE VAR 1 enter -1 to STOP
CLIMATE VARIABLE < 7 > LAG < 1 >

------Begin bisection/grid search, ignore iteration numbers- - - -
CURRENT LIKELIHOOD = 0.000000
BEGINNING ITERATION NUMBER 1 ,PLEASE WAIT
CURRENT VARIANCE PARAMETERS

1 .oooooo
0.000000

CURRENT LIKELIHOOD = 1687.771775
BEGINNING ITERATION NUMBER 2 ,PLEASE  WAIT
CURRENT VARIANCE PARAMETERS

11 .oooooo
0.002500

CURRENT LIKELIHOOD = 2270.400577
BEGINNING ITERATION NUMBER 3 ,PLEASE WAIT
CURRENT VARIANCE PARAMETERS

16.000000
0.005000

CURRENT LIKELIHOOD = 2288.091535
BEGINNING ITERATION NUMBER 4 ,PLEASE WAIT
CURRENT VARIANCE PARAMETERS

2 1 .oooooo
0.007500

CURRENT LIKELIHOOD = 2294.123504
BEGINNING ITERATION NUMBER 4 ,PLEASE WAIT



CURRENT VARIANCE PARAMETERS
26.000000
0.010000

CURRENT LIKELIHOOD = 2295.97 1978
BEGINNING ITERATION NUMBER 4
CURRENT VARIANCE PARAMETERS

3 1 .oooooo

0.012500
CURRENT LIKELIHOOD = 2295.979962
BEGINNING ITERATION NUMBER 4
CURRENT VARIANCE PARAMETERS

36.000000
0.015000

,PLEASE  WAIT

,PLEASE  WAIT

_________  Finished with Bisection_---------

CURRENT LIKELIHOOD = 2295.090842
BEGINNING ITERATION NUMBER 3
CURRENT VARIANCE PARAMETERS

3 1 .oooooo
0.012500

CURRENT LIKELIHOOD = 2295.979962
BEGINNING ITERATION NUMBER 4
CURRENT VARIANCE PARAMETERS

37.492555
0.003756

CURRENT LIKELIHOOD = 2297.724042
BEGINNING ITERATION NUMBER 5
CURRENT VARIANCE PARAMETERS

43.985110
0.001570

CURRENT LIKELIHOOD = 2297.4440 17
BEGINNING ITERATION NUMBER 6
CURRENT VARIANCE PARAMETERS

29.2928 10
0.002924

,PLEASE  WAIT

,PLEASE  WAIT

,PLEASE  WAIT

,PLEASE WAIT

______________l=INAL  RESULTS  _______ ____--

FINAL LIKELIHOOD 2297.802358
BEST VARIANCE PARAMETER ESTIMATES

29.2928 10
0.002924

COVARIANCE OF VARIANCE PARAMETERS
64.822559 -0.007322
-0.007322 0.000006

ENTER 1 TO SKIP SMOOTHING
<o>

ENTER COLUMN AND LAG OF CLIMATE VAR 1 enter -1 to STOP
< -1 >-1



APPENDIX B - DYNAPLOT PROGRAM OUTPUT

Mich igan/hemlock

Q 1902 1915 1929 1943 1956 1970 1983

years

PLOT B-l. This plot was produced by program DYNAPLOT and shows the one step
ahead prediction errors surrounded by 95 percent confidence intervals, which are
very narrow for this example. The user can supply a title for each graph;
Michigan/hemlock was used for this example to denote that the trees were
hemlock from Michigan.



Mich igan/hemlock

7 1903 1916 1930 1943 1956 1970 1983

years

PLOT B-2. This plot was produced by program DYNAPLOT and shows the mt
parameter (equation 2) plotted over time.
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Michigan/hemlock

___--_--------------_----_-------------

-----_--------------------- --__---_----
I1 8 I I I I I I I L 4 81 8 3 * 11 1 c 0

1903 1916 1930 1943 1956 1970 1983

years

PLOT B-3. This plot was produced by program DYNAPLOT and shows the climate
model intercept, b,, (equation 2) plotted over time.

3.1
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years
1983

PLOT B-4.  This  p lo t  was  produced by program DYNAPLOT and shows the
parameter multiplying previous first difference of July temperature plotted over
time. This corresponds to bl in equation (2). The dashed lines are 95 percent
confidence intervals.
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PJULYT and Chronology

0
4

II
I
I

-;902910 918 926 934 943 951 959 967’ 975 983

Chronology is dashed

PLOT B-5. This plot was produced by program OVERLAY and shows previous first
difference of July temperature (solid line) overlaid on the average chronology
(dashed line) plotted over time. The program allows the user to specify all labels.
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Cl - correlation matrix for lag 0
Out of 378 independent elements 378 are significant (100 %)
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Pmdictionerrorcmss~rrelationmatrix
0

- 0 0 oo-oo-o-
-oo-o-o-oo-o-oo-o-----

o-o- o - o - o -
- 0 0- 0 - o
o-00 O-oo-
0000000-0000000-000000000-00
o-ooo-o-o-ooo-o-o-o
-o-oo-oo-ooo-oooo-
0000000000000000000000000000
O-000-00-000-00-00000-0
0-0000 o-oo-oo-oo-
00-0000-0-000-000-0-000-0
-OOO-ooo-o-oo--o-o-
000000000000000-000000000000
0000000000000000000000000000
-00000-0000-0-0000-00
- 0 0 0 - - 0 0 4 - 0 -
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 O-O-
ooooooooo-ooooooooo-o-ooooo-
- 0 0 0 - 0 0 0
0-00000-00-00000000000-000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0

o-o-o - o
-o-oo-oo-o--ooo-oooo--

c2- Correlation matrix for lag 1
out of 784 kkpndent elements 388 are significant (49 %)
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Predictionerrorcmss-correlationmatrix
o+o+oo(Hoooo+cHoooooooo+ooO+
ooo+ooo+oooo+ooooooooooooocH-
0000000000000000000000000000
+wtooo+oooo+o+ooOtoooooooo+
+t+ooo+ooowHooe+Hoi+oi+
oooooooooooo+ooooooi+ooooooo
oooooooooooo+ooooooooooooooo
oo+ooooooooo+ooooooooooooooo
oo+oooooooootooooooooooooooo
*000+00oi++000000000+
oooooooooo-ooooooooooooooooo
00000-0000000000000000000000
ooooooooooooooooooooooooooO+
ocHOoooooooo+oooooooooo+oooo
oo+ooooooooo+oooooooooo+oooo
oooooooooo-ooooooooooooooooo
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
oo+ooooooooooooooooooooooooo
00000-000000000000000000000
oooooooooooo+ooooooooooooooo
0000-00-0000000000000000000
oooooooooo-ooooooooooooooooo
0000000000000000000000000000
+oi-toooooooo+o+ooo+oooo+ooo+
+oo+ooooooooocHoooooooooooo+

c3- Correlation matrix for lag 2
Out of 784 inkpendent  elements 88 am significant (11 %)
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Predictionermrcmss-correlationmtrix
0000000-00000000000000000000
0000000000000000000000000000
0000000000000000000000000000
-ooooooooooooo-oooooo-ooooo-
000000000000-0-0000000000000
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
-00-0000000-0000000000000000
00000000-00-00-0000000000000
ooooooooooooo+ooooooooo+oooo
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
oooooooooooooooooooooo+ooooo
0000000000000000000000000000
0000000000000000000000000000
-oo-ooo-oooooo-oooooo-ooooo-
-0000000000000-000000-000000

c4- Correlation matrix for lag 3
Out of 784 tiepedent elements 25 am significant (3 %)
TMseresultsaresavedinthefilecomutx.out
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APPBUIIXD-EX2WTZS oFmEEm3JGD?fm-

TucsonFomat- Thees5entialf~tu&sare:eachlineexceptthefixst
beginsanewdecade; ~~line~istsofanIDvariable,  thentheyear
follmed by up to 10 incremmts;variablesareseparatedbyspaces,anda
tree ends with a 999. However, theprogramwor~withoutthe999 ending.

108011 1856 190 192 144 161
108011 1860 147 89 96 I.26 8; 8: 10: 14; 10;

.
84

108011 1870 63 58 87 88 72 94 101 60 87 81
108011 1880 93 93 117 I.27 96 84 83 82 83 107
108011 1890 89 61 61 74 72 64 56 78 57 62
108011 1900 69 69 68 86 82 67 80 80 92 69
108011 1910 92 59 85 97 66 68 50 67 56 77
108011 1920 99 72 61 84 80 69 39 46 45 41
108011 1930 61 47 58 42 24 35 59 42 30 45
108011 1940 44 51 44 20 25 27 19 17 17 8
108011 1950 21 24 31 16 9 23 17 15 18 24
108011 1960 18 18 21 20 16 19 30 14 21 13
108011 1970 26 19 18 14 17 17 27 14 17 11
108011 1980 25 4 24 20 999 . . . . .

AltemateFormat- Thesameas ll.xson formatbutalllinesbeginwithan
even decade. Bothoftheseformatscanbeeasilyreadbyprogrammakedata.

108011 1850
108011 1860
108011 1870
108011 1880
108011 1890
108011 1900
108011 1910
108011 1920
108011 1930
108011 1940
108011 1950
108011 1960
108011 1970
108011 1980

.
14; 89
63 58
93 93
89 61
69 69
92 59
99 72
61 47
44 51
21 24
18 18
26 19
25 4

9:
87
117
61
68
85
61
58
44
31
21
18
24

.
126 8; 8;

190 192 144 161
106 145 103 84

88 72 94 101 60 87 81
127 96 84 83 82 83 107
74 72 64 56 78 57 62
86 82 67 80 80 92 69
97 66 68 50 67 56 77
84 80 69 39 46 45 41
42 24 35 59 42 30 45
20 25 27 19 17 17 8
16 9 23 17 15 18 24
20 16 19 30 14 21 13
14 17 17 27 14 17 11
20 999 . . . . .
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stand dynamics or environmental stress. These dynamic effects can be
studied using theory and computer programs described herein. An
example application is given, and the programs and further informa-
tion on their use are available from the authors.
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